3.14.37 \(\int (b d+2 c d x)^{7/2} (a+b x+c x^2)^{3/2} \, dx\) [1337]

3.14.37.1 Optimal result
3.14.37.2 Mathematica [C] (verified)
3.14.37.3 Rubi [A] (verified)
3.14.37.4 Maple [B] (verified)
3.14.37.5 Fricas [C] (verification not implemented)
3.14.37.6 Sympy [F]
3.14.37.7 Maxima [F]
3.14.37.8 Giac [F]
3.14.37.9 Mupad [F(-1)]

3.14.37.1 Optimal result

Integrand size = 28, antiderivative size = 274 \[ \int (b d+2 c d x)^{7/2} \left (a+b x+c x^2\right )^{3/2} \, dx=\frac {\left (b^2-4 a c\right )^3 d^3 \sqrt {b d+2 c d x} \sqrt {a+b x+c x^2}}{231 c^2}+\frac {\left (b^2-4 a c\right )^2 d (b d+2 c d x)^{5/2} \sqrt {a+b x+c x^2}}{385 c^2}-\frac {\left (b^2-4 a c\right ) (b d+2 c d x)^{9/2} \sqrt {a+b x+c x^2}}{110 c^2 d}+\frac {(b d+2 c d x)^{9/2} \left (a+b x+c x^2\right )^{3/2}}{15 c d}+\frac {\left (b^2-4 a c\right )^{17/4} d^{7/2} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {b d+2 c d x}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right ),-1\right )}{462 c^3 \sqrt {a+b x+c x^2}} \]

output
1/15*(2*c*d*x+b*d)^(9/2)*(c*x^2+b*x+a)^(3/2)/c/d+1/385*(-4*a*c+b^2)^2*d*(2 
*c*d*x+b*d)^(5/2)*(c*x^2+b*x+a)^(1/2)/c^2-1/110*(-4*a*c+b^2)*(2*c*d*x+b*d) 
^(9/2)*(c*x^2+b*x+a)^(1/2)/c^2/d+1/231*(-4*a*c+b^2)^3*d^3*(2*c*d*x+b*d)^(1 
/2)*(c*x^2+b*x+a)^(1/2)/c^2+1/462*(-4*a*c+b^2)^(17/4)*d^(7/2)*EllipticF((2 
*c*d*x+b*d)^(1/2)/(-4*a*c+b^2)^(1/4)/d^(1/2),I)*(-c*(c*x^2+b*x+a)/(-4*a*c+ 
b^2))^(1/2)/c^3/(c*x^2+b*x+a)^(1/2)
 
3.14.37.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.27 (sec) , antiderivative size = 161, normalized size of antiderivative = 0.59 \[ \int (b d+2 c d x)^{7/2} \left (a+b x+c x^2\right )^{3/2} \, dx=\frac {4 (d (b+2 c x))^{7/2} \sqrt {a+x (b+c x)} \left (11 (b+2 c x)^2 (a+x (b+c x))^2-10 \left (a-\frac {b^2}{4 c}\right ) c \left (2 (a+x (b+c x))^2-\frac {\left (b^2-4 a c\right )^2 \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},\frac {1}{4},\frac {5}{4},\frac {(b+2 c x)^2}{b^2-4 a c}\right )}{16 c^2 \sqrt {\frac {c (a+x (b+c x))}{-b^2+4 a c}}}\right )\right )}{165 (b+2 c x)^3} \]

input
Integrate[(b*d + 2*c*d*x)^(7/2)*(a + b*x + c*x^2)^(3/2),x]
 
output
(4*(d*(b + 2*c*x))^(7/2)*Sqrt[a + x*(b + c*x)]*(11*(b + 2*c*x)^2*(a + x*(b 
 + c*x))^2 - 10*(a - b^2/(4*c))*c*(2*(a + x*(b + c*x))^2 - ((b^2 - 4*a*c)^ 
2*Hypergeometric2F1[-3/2, 1/4, 5/4, (b + 2*c*x)^2/(b^2 - 4*a*c)])/(16*c^2* 
Sqrt[(c*(a + x*(b + c*x)))/(-b^2 + 4*a*c)]))))/(165*(b + 2*c*x)^3)
 
3.14.37.3 Rubi [A] (verified)

Time = 0.53 (sec) , antiderivative size = 286, normalized size of antiderivative = 1.04, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {1109, 1109, 1116, 1116, 1115, 1113, 762}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \left (a+b x+c x^2\right )^{3/2} (b d+2 c d x)^{7/2} \, dx\)

\(\Big \downarrow \) 1109

\(\displaystyle \frac {\left (a+b x+c x^2\right )^{3/2} (b d+2 c d x)^{9/2}}{15 c d}-\frac {\left (b^2-4 a c\right ) \int (b d+2 c x d)^{7/2} \sqrt {c x^2+b x+a}dx}{10 c}\)

\(\Big \downarrow \) 1109

\(\displaystyle \frac {\left (a+b x+c x^2\right )^{3/2} (b d+2 c d x)^{9/2}}{15 c d}-\frac {\left (b^2-4 a c\right ) \left (\frac {\sqrt {a+b x+c x^2} (b d+2 c d x)^{9/2}}{11 c d}-\frac {\left (b^2-4 a c\right ) \int \frac {(b d+2 c x d)^{7/2}}{\sqrt {c x^2+b x+a}}dx}{22 c}\right )}{10 c}\)

\(\Big \downarrow \) 1116

\(\displaystyle \frac {\left (a+b x+c x^2\right )^{3/2} (b d+2 c d x)^{9/2}}{15 c d}-\frac {\left (b^2-4 a c\right ) \left (\frac {\sqrt {a+b x+c x^2} (b d+2 c d x)^{9/2}}{11 c d}-\frac {\left (b^2-4 a c\right ) \left (\frac {5}{7} d^2 \left (b^2-4 a c\right ) \int \frac {(b d+2 c x d)^{3/2}}{\sqrt {c x^2+b x+a}}dx+\frac {4}{7} d \sqrt {a+b x+c x^2} (b d+2 c d x)^{5/2}\right )}{22 c}\right )}{10 c}\)

\(\Big \downarrow \) 1116

\(\displaystyle \frac {\left (a+b x+c x^2\right )^{3/2} (b d+2 c d x)^{9/2}}{15 c d}-\frac {\left (b^2-4 a c\right ) \left (\frac {\sqrt {a+b x+c x^2} (b d+2 c d x)^{9/2}}{11 c d}-\frac {\left (b^2-4 a c\right ) \left (\frac {5}{7} d^2 \left (b^2-4 a c\right ) \left (\frac {1}{3} d^2 \left (b^2-4 a c\right ) \int \frac {1}{\sqrt {b d+2 c x d} \sqrt {c x^2+b x+a}}dx+\frac {4}{3} d \sqrt {a+b x+c x^2} \sqrt {b d+2 c d x}\right )+\frac {4}{7} d \sqrt {a+b x+c x^2} (b d+2 c d x)^{5/2}\right )}{22 c}\right )}{10 c}\)

\(\Big \downarrow \) 1115

\(\displaystyle \frac {\left (a+b x+c x^2\right )^{3/2} (b d+2 c d x)^{9/2}}{15 c d}-\frac {\left (b^2-4 a c\right ) \left (\frac {\sqrt {a+b x+c x^2} (b d+2 c d x)^{9/2}}{11 c d}-\frac {\left (b^2-4 a c\right ) \left (\frac {5}{7} d^2 \left (b^2-4 a c\right ) \left (\frac {d^2 \left (b^2-4 a c\right ) \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} \int \frac {1}{\sqrt {b d+2 c x d} \sqrt {-\frac {c^2 x^2}{b^2-4 a c}-\frac {b c x}{b^2-4 a c}-\frac {a c}{b^2-4 a c}}}dx}{3 \sqrt {a+b x+c x^2}}+\frac {4}{3} d \sqrt {a+b x+c x^2} \sqrt {b d+2 c d x}\right )+\frac {4}{7} d \sqrt {a+b x+c x^2} (b d+2 c d x)^{5/2}\right )}{22 c}\right )}{10 c}\)

\(\Big \downarrow \) 1113

\(\displaystyle \frac {\left (a+b x+c x^2\right )^{3/2} (b d+2 c d x)^{9/2}}{15 c d}-\frac {\left (b^2-4 a c\right ) \left (\frac {\sqrt {a+b x+c x^2} (b d+2 c d x)^{9/2}}{11 c d}-\frac {\left (b^2-4 a c\right ) \left (\frac {5}{7} d^2 \left (b^2-4 a c\right ) \left (\frac {2 d \left (b^2-4 a c\right ) \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} \int \frac {1}{\sqrt {1-\frac {(b d+2 c x d)^2}{\left (b^2-4 a c\right ) d^2}}}d\sqrt {b d+2 c x d}}{3 c \sqrt {a+b x+c x^2}}+\frac {4}{3} d \sqrt {a+b x+c x^2} \sqrt {b d+2 c d x}\right )+\frac {4}{7} d \sqrt {a+b x+c x^2} (b d+2 c d x)^{5/2}\right )}{22 c}\right )}{10 c}\)

\(\Big \downarrow \) 762

\(\displaystyle \frac {\left (a+b x+c x^2\right )^{3/2} (b d+2 c d x)^{9/2}}{15 c d}-\frac {\left (b^2-4 a c\right ) \left (\frac {\sqrt {a+b x+c x^2} (b d+2 c d x)^{9/2}}{11 c d}-\frac {\left (b^2-4 a c\right ) \left (\frac {5}{7} d^2 \left (b^2-4 a c\right ) \left (\frac {2 d^{3/2} \left (b^2-4 a c\right )^{5/4} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {b d+2 c x d}}{\sqrt [4]{b^2-4 a c} \sqrt {d}}\right ),-1\right )}{3 c \sqrt {a+b x+c x^2}}+\frac {4}{3} d \sqrt {a+b x+c x^2} \sqrt {b d+2 c d x}\right )+\frac {4}{7} d \sqrt {a+b x+c x^2} (b d+2 c d x)^{5/2}\right )}{22 c}\right )}{10 c}\)

input
Int[(b*d + 2*c*d*x)^(7/2)*(a + b*x + c*x^2)^(3/2),x]
 
output
((b*d + 2*c*d*x)^(9/2)*(a + b*x + c*x^2)^(3/2))/(15*c*d) - ((b^2 - 4*a*c)* 
(((b*d + 2*c*d*x)^(9/2)*Sqrt[a + b*x + c*x^2])/(11*c*d) - ((b^2 - 4*a*c)*( 
(4*d*(b*d + 2*c*d*x)^(5/2)*Sqrt[a + b*x + c*x^2])/7 + (5*(b^2 - 4*a*c)*d^2 
*((4*d*Sqrt[b*d + 2*c*d*x]*Sqrt[a + b*x + c*x^2])/3 + (2*(b^2 - 4*a*c)^(5/ 
4)*d^(3/2)*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticF[ArcSin[S 
qrt[b*d + 2*c*d*x]/((b^2 - 4*a*c)^(1/4)*Sqrt[d])], -1])/(3*c*Sqrt[a + b*x 
+ c*x^2])))/7))/(22*c)))/(10*c)
 

3.14.37.3.1 Defintions of rubi rules used

rule 762
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[(1/(Sqrt[a]*Rt[-b/a, 4]) 
)*EllipticF[ArcSin[Rt[-b/a, 4]*x], -1], x] /; FreeQ[{a, b}, x] && NegQ[b/a] 
 && GtQ[a, 0]
 

rule 1109
Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_S 
ymbol] :> Simp[(d + e*x)^(m + 1)*((a + b*x + c*x^2)^p/(e*(m + 2*p + 1))), x 
] - Simp[d*p*((b^2 - 4*a*c)/(b*e*(m + 2*p + 1)))   Int[(d + e*x)^m*(a + b*x 
 + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[2*c*d - b* 
e, 0] && NeQ[m + 2*p + 3, 0] && GtQ[p, 0] &&  !LtQ[m, -1] &&  !(IGtQ[(m - 1 
)/2, 0] && ( !IntegerQ[p] || LtQ[m, 2*p])) && RationalQ[m] && IntegerQ[2*p]
 

rule 1113
Int[1/(Sqrt[(d_) + (e_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_ 
Symbol] :> Simp[(4/e)*Sqrt[-c/(b^2 - 4*a*c)]   Subst[Int[1/Sqrt[Simp[1 - b^ 
2*(x^4/(d^2*(b^2 - 4*a*c))), x]], x], x, Sqrt[d + e*x]], x] /; FreeQ[{a, b, 
 c, d, e}, x] && EqQ[2*c*d - b*e, 0] && LtQ[c/(b^2 - 4*a*c), 0]
 

rule 1115
Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Sym 
bol] :> Simp[Sqrt[(-c)*((a + b*x + c*x^2)/(b^2 - 4*a*c))]/Sqrt[a + b*x + c* 
x^2]   Int[(d + e*x)^m/Sqrt[(-a)*(c/(b^2 - 4*a*c)) - b*c*(x/(b^2 - 4*a*c)) 
- c^2*(x^2/(b^2 - 4*a*c))], x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c* 
d - b*e, 0] && EqQ[m^2, 1/4]
 

rule 1116
Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_S 
ymbol] :> Simp[2*d*(d + e*x)^(m - 1)*((a + b*x + c*x^2)^(p + 1)/(b*(m + 2*p 
 + 1))), x] + Simp[d^2*(m - 1)*((b^2 - 4*a*c)/(b^2*(m + 2*p + 1)))   Int[(d 
 + e*x)^(m - 2)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] 
 && EqQ[2*c*d - b*e, 0] && NeQ[m + 2*p + 3, 0] && GtQ[m, 1] && NeQ[m + 2*p 
+ 1, 0] && (IntegerQ[2*p] || (IntegerQ[m] && RationalQ[p]) || OddQ[m])
 
3.14.37.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(641\) vs. \(2(234)=468\).

Time = 3.77 (sec) , antiderivative size = 642, normalized size of antiderivative = 2.34

method result size
risch \(-\frac {\left (-2464 c^{6} x^{6}-7392 b \,c^{5} x^{5}-3808 a \,c^{5} x^{4}-8288 b^{2} c^{4} x^{4}-7616 a b \,c^{4} x^{3}-4256 x^{3} b^{3} c^{3}-384 a^{2} c^{4} x^{2}-5520 a \,b^{2} c^{3} x^{2}-906 x^{2} b^{4} c^{2}-384 a^{2} b \,c^{3} x -1712 x a \,b^{3} c^{2}-10 x \,b^{5} c +640 c^{3} a^{3}-576 a^{2} b^{2} c^{2}-70 a \,b^{4} c +5 b^{6}\right ) \left (2 c x +b \right ) \sqrt {c \,x^{2}+b x +a}\, d^{4}}{2310 c^{2} \sqrt {d \left (2 c x +b \right )}}+\frac {\left (256 a^{4} c^{4}-256 a^{3} b^{2} c^{3}+96 a^{2} b^{4} c^{2}-16 a \,b^{6} c +b^{8}\right ) \left (\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}\right ) \sqrt {\frac {x +\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}{\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}}\, \sqrt {\frac {x +\frac {b}{2 c}}{-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}+\frac {b}{2 c}}}\, \sqrt {\frac {x -\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}}{-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}}}\, F\left (\sqrt {\frac {x +\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}{\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}}}, \sqrt {\frac {-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}}{-\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}+\frac {b}{2 c}}}\right ) d^{4} \sqrt {d \left (2 c x +b \right ) \left (c \,x^{2}+b x +a \right )}}{462 c^{2} \sqrt {2 c^{2} d \,x^{3}+3 b c d \,x^{2}+2 a d x c +b^{2} d x +a b d}\, \sqrt {d \left (2 c x +b \right )}\, \sqrt {c \,x^{2}+b x +a}}\) \(642\)
default \(\text {Expression too large to display}\) \(1057\)
elliptic \(\text {Expression too large to display}\) \(5816\)

input
int((2*c*d*x+b*d)^(7/2)*(c*x^2+b*x+a)^(3/2),x,method=_RETURNVERBOSE)
 
output
-1/2310/c^2*(-2464*c^6*x^6-7392*b*c^5*x^5-3808*a*c^5*x^4-8288*b^2*c^4*x^4- 
7616*a*b*c^4*x^3-4256*b^3*c^3*x^3-384*a^2*c^4*x^2-5520*a*b^2*c^3*x^2-906*b 
^4*c^2*x^2-384*a^2*b*c^3*x-1712*a*b^3*c^2*x-10*b^5*c*x+640*a^3*c^3-576*a^2 
*b^2*c^2-70*a*b^4*c+5*b^6)*(2*c*x+b)*(c*x^2+b*x+a)^(1/2)*d^4/(d*(2*c*x+b)) 
^(1/2)+1/462/c^2*(256*a^4*c^4-256*a^3*b^2*c^3+96*a^2*b^4*c^2-16*a*b^6*c+b^ 
8)*(1/2/c*(-b+(-4*a*c+b^2)^(1/2))+1/2*(b+(-4*a*c+b^2)^(1/2))/c)*((x+1/2*(b 
+(-4*a*c+b^2)^(1/2))/c)/(1/2/c*(-b+(-4*a*c+b^2)^(1/2))+1/2*(b+(-4*a*c+b^2) 
^(1/2))/c))^(1/2)*((x+1/2/c*b)/(-1/2*(b+(-4*a*c+b^2)^(1/2))/c+1/2/c*b))^(1 
/2)*((x-1/2/c*(-b+(-4*a*c+b^2)^(1/2)))/(-1/2*(b+(-4*a*c+b^2)^(1/2))/c-1/2/ 
c*(-b+(-4*a*c+b^2)^(1/2))))^(1/2)/(2*c^2*d*x^3+3*b*c*d*x^2+2*a*c*d*x+b^2*d 
*x+a*b*d)^(1/2)*EllipticF(((x+1/2*(b+(-4*a*c+b^2)^(1/2))/c)/(1/2/c*(-b+(-4 
*a*c+b^2)^(1/2))+1/2*(b+(-4*a*c+b^2)^(1/2))/c))^(1/2),((-1/2*(b+(-4*a*c+b^ 
2)^(1/2))/c-1/2/c*(-b+(-4*a*c+b^2)^(1/2)))/(-1/2*(b+(-4*a*c+b^2)^(1/2))/c+ 
1/2/c*b))^(1/2))*d^4*(d*(2*c*x+b)*(c*x^2+b*x+a))^(1/2)/(d*(2*c*x+b))^(1/2) 
/(c*x^2+b*x+a)^(1/2)
 
3.14.37.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.13 (sec) , antiderivative size = 292, normalized size of antiderivative = 1.07 \[ \int (b d+2 c d x)^{7/2} \left (a+b x+c x^2\right )^{3/2} \, dx=\frac {5 \, \sqrt {2} {\left (b^{8} - 16 \, a b^{6} c + 96 \, a^{2} b^{4} c^{2} - 256 \, a^{3} b^{2} c^{3} + 256 \, a^{4} c^{4}\right )} \sqrt {c^{2} d} d^{3} {\rm weierstrassPInverse}\left (\frac {b^{2} - 4 \, a c}{c^{2}}, 0, \frac {2 \, c x + b}{2 \, c}\right ) + 2 \, {\left (2464 \, c^{8} d^{3} x^{6} + 7392 \, b c^{7} d^{3} x^{5} + 224 \, {\left (37 \, b^{2} c^{6} + 17 \, a c^{7}\right )} d^{3} x^{4} + 224 \, {\left (19 \, b^{3} c^{5} + 34 \, a b c^{6}\right )} d^{3} x^{3} + 6 \, {\left (151 \, b^{4} c^{4} + 920 \, a b^{2} c^{5} + 64 \, a^{2} c^{6}\right )} d^{3} x^{2} + 2 \, {\left (5 \, b^{5} c^{3} + 856 \, a b^{3} c^{4} + 192 \, a^{2} b c^{5}\right )} d^{3} x - {\left (5 \, b^{6} c^{2} - 70 \, a b^{4} c^{3} - 576 \, a^{2} b^{2} c^{4} + 640 \, a^{3} c^{5}\right )} d^{3}\right )} \sqrt {2 \, c d x + b d} \sqrt {c x^{2} + b x + a}}{4620 \, c^{4}} \]

input
integrate((2*c*d*x+b*d)^(7/2)*(c*x^2+b*x+a)^(3/2),x, algorithm="fricas")
 
output
1/4620*(5*sqrt(2)*(b^8 - 16*a*b^6*c + 96*a^2*b^4*c^2 - 256*a^3*b^2*c^3 + 2 
56*a^4*c^4)*sqrt(c^2*d)*d^3*weierstrassPInverse((b^2 - 4*a*c)/c^2, 0, 1/2* 
(2*c*x + b)/c) + 2*(2464*c^8*d^3*x^6 + 7392*b*c^7*d^3*x^5 + 224*(37*b^2*c^ 
6 + 17*a*c^7)*d^3*x^4 + 224*(19*b^3*c^5 + 34*a*b*c^6)*d^3*x^3 + 6*(151*b^4 
*c^4 + 920*a*b^2*c^5 + 64*a^2*c^6)*d^3*x^2 + 2*(5*b^5*c^3 + 856*a*b^3*c^4 
+ 192*a^2*b*c^5)*d^3*x - (5*b^6*c^2 - 70*a*b^4*c^3 - 576*a^2*b^2*c^4 + 640 
*a^3*c^5)*d^3)*sqrt(2*c*d*x + b*d)*sqrt(c*x^2 + b*x + a))/c^4
 
3.14.37.6 Sympy [F]

\[ \int (b d+2 c d x)^{7/2} \left (a+b x+c x^2\right )^{3/2} \, dx=\int \left (d \left (b + 2 c x\right )\right )^{\frac {7}{2}} \left (a + b x + c x^{2}\right )^{\frac {3}{2}}\, dx \]

input
integrate((2*c*d*x+b*d)**(7/2)*(c*x**2+b*x+a)**(3/2),x)
 
output
Integral((d*(b + 2*c*x))**(7/2)*(a + b*x + c*x**2)**(3/2), x)
 
3.14.37.7 Maxima [F]

\[ \int (b d+2 c d x)^{7/2} \left (a+b x+c x^2\right )^{3/2} \, dx=\int { {\left (2 \, c d x + b d\right )}^{\frac {7}{2}} {\left (c x^{2} + b x + a\right )}^{\frac {3}{2}} \,d x } \]

input
integrate((2*c*d*x+b*d)^(7/2)*(c*x^2+b*x+a)^(3/2),x, algorithm="maxima")
 
output
integrate((2*c*d*x + b*d)^(7/2)*(c*x^2 + b*x + a)^(3/2), x)
 
3.14.37.8 Giac [F]

\[ \int (b d+2 c d x)^{7/2} \left (a+b x+c x^2\right )^{3/2} \, dx=\int { {\left (2 \, c d x + b d\right )}^{\frac {7}{2}} {\left (c x^{2} + b x + a\right )}^{\frac {3}{2}} \,d x } \]

input
integrate((2*c*d*x+b*d)^(7/2)*(c*x^2+b*x+a)^(3/2),x, algorithm="giac")
 
output
integrate((2*c*d*x + b*d)^(7/2)*(c*x^2 + b*x + a)^(3/2), x)
 
3.14.37.9 Mupad [F(-1)]

Timed out. \[ \int (b d+2 c d x)^{7/2} \left (a+b x+c x^2\right )^{3/2} \, dx=\int {\left (b\,d+2\,c\,d\,x\right )}^{7/2}\,{\left (c\,x^2+b\,x+a\right )}^{3/2} \,d x \]

input
int((b*d + 2*c*d*x)^(7/2)*(a + b*x + c*x^2)^(3/2),x)
 
output
int((b*d + 2*c*d*x)^(7/2)*(a + b*x + c*x^2)^(3/2), x)